Lagrangian Multiforms for Kadomtsev–Petviashvili (KP) and the Gelfand–Dickey Hierarchy

نویسندگان

چکیده

We present, for the first time, a Lagrangian multiform complete Kadomtsev-Petviashvili (KP) hierarchy -- single variational object that generates whole and encapsulates its integrability. By performing reduction on this multiform, we also obtain multiforms Gelfand-Dickey of hierarchies, comprising, amongst others, Korteweg-de Vries Boussinesq hierarchies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lagrangian multiforms and multidimensional consistency

We show that well-chosen Lagrangians for a class of two-dimensional integrable lattice equations obey a closure relation when embedded in a higher dimensional lattice. On the basis of this property we formulate a Lagrangian description for such systems in terms of Lagrangian multiforms. We discuss the connection of this formalism with the notion of multidimensional consistency, and the role of ...

متن کامل

q-Deformed KP Hierarchy and q-Deformed Constrained KP Hierarchy

Using the determinant representation of gauge transformation operator, we have shown that the general form of τ function of the q-KP hierarchy is a q-deformed generalized Wronskian, which includes the q-deformed Wronskian as a special case. On the basis of these, we study the q-deformed constrained KP (q-cKP) hierarchy, i.e. l-constraints of q-KP hierarchy. Similar to the ordinary constrained K...

متن کامل

The Kp Hierarchy ,

The KP hierarchy is a completely integrable system of quadratic, partial differential equations that generalizes the KdV hierarchy. A linear combination of Schur functions is a solution to the KP hierarchy if and only if its coefficients satisfy the Pï ucker relations from geometry. We give a solution to the Pï ucker relations involving products of variables marking contents for a partition, an...

متن کامل

Calogero-Moser hierarchy and KP hierarchy

In [1], Airault, McKean and Moser observed that the motion of poles of a rational solution to the K-dV or Boussinesq equation obeys the Calogero-Moser dynamical system [2, 3, 4] with an extra condition on the configuration of poles. In [8], Krichever observed that the motion of poles of a solution to the KP equation which is rational in t1 obeys the Calogero-Moser dynamical system. In this note...

متن کامل

generalized KP hierarchy

We propose one possible generalization of the KP hierarchy, which possesses multi bi–hamiltonian structures, and can be viewed as several KP hierarchies coupled together .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2021

ISSN: ['1687-0247', '1073-7928']

DOI: https://doi.org/10.1093/imrn/rnab288